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Amber is fossilized tree resin produced by the metabolism of vascular plants that
has experienced various geological processes, including burial, compression, and
heating. Therefore, most of the previously reported amber pieces were unearthed
from sedimentary rocks. The record of amber in tectonic active regions, e.g.,
Taiwan, is extremely poor and has not been scientifically certified, leading to a
poor understanding of the history of prehistoric flora in this region. This study
reports a 1-cm yellow-brown amorphous resin interspersed in sandstone blocks
in the Lichi Mélange at the southernmost tip of the Coastal Range in eastern
Taiwan, representing the first official record of amber from the mélange unit and
as well as in Taiwan. The results, in addition to the affirmation of the amber, show
that the amber is composed of sesquiterpenes and triterpenoids, indicating a
possible origin of dipterocarp trees that are absent in the paleobotanic record and
modern flora in Taiwan. Furthermore, infrared spectra analysis shows its
compositional similarity to the amber from Sumatra, Indonesia, which boasts
modern dipterocarp forests. Petrographic analysis of the surrounding sandstone
suggests that the amber was deposited into the continental margin and allocated
to Taiwan through the arc-continental collision in ~6–7 Ma. In summary, this study
represents the first report of amber unearthed in the mélange unit and Taiwan. It
shows that amber is a durable and reliable information carrier in accordance with
biogeographic and tectonic evidence.
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1 Introduction

1.1 The occurrence of amber

Plants produce resinous secretion, which serves to heal injuries and obstruct predators
(Labandeira, 2014). The resinous secretion is an organic material often highly resistant to
weathering and thus is able to deposit in developing sediments. Throughout transportation, deep
burial, thermal-pressure effect, and long-term maturation, the resin might transform into hard
resin amber, and it is not regarded as a mineral due to the lack of a crystallographic structure.
Moreover, before the eventual depositional place, transportation is a long-term process that takes
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weeks to millennia (Labandeira, 2014). Typically, transportation from
the source to the initial depositional area in a fluvial, lake, deltaic,
lagoon, or nearshore marine environment, frequently, is from a few to
tens of kilometers; much less commonly, a few hundred of kilometers
(Martínez-Delclòs et al., 2004; Girard et al., 2008; Girard et al., 2009).

Due to the amber’s botanical structural characteristics and
composition (Anderson and Winans, 1991; Anderson et al.,
1992) global amber classification system classified amber resinites
into four classes. Class I is the most abundant, comprised of
labdatriene carboxylic acids such as communic or ozic acids. The
most famous origins are from the Baltic Sea, the Dominican
Republic, and New Zealand. Class II resinites are formed from
the polymer of bicycling sesquiterpenoid hydrocarbons and
Triterpenoid. The most probable botanical affinity is
Dipterocarpaceae, which is mainly distributed in the tropical
forests of Southeast Asia. Class III, whose basic structural
character is Polystyrene, was found in New Jersey and Germany,
and the most probable botanical affinity is Hammelidaceae. Class IV
resinites originate from Bovey-Tracy and Moravia, and the basic
structural character is sesquiterpenoid, which is primarily based on
the Cedrane skeleton.

In the present tropical rain forests of the Indian Peninsula and
the Indo-China Peninsula, the Dipterocarpaceae is the dominant
tree family and is one of the confirmed botanical provenances of the

resinites (Anderson and Winans. (1991); Anderson et al., 1992).
Dipterocarpaceae are also well known in Cenozoic fossil floras.
Several fossils tension are recorded around the south, southeast, and
east Asia regions, except in Taiwan, so far (Dutta et al., 2011; Rust
et al., 2010; Böhme et al., 2013; Langenheim and Beck, 1965;
Brackman et al., 1984; Van Aarssen et al., 1990; Kocsis et al.,
2020; Hillmer et al., 1992; Feng et al., 2013; Shi et al., 2014;
Naglik et al., 2018; Wang et al., 2018).

In this study, we first report and quantitatively analyze the
amber resin of the family Dipterocarpaceae in Lichi Mélange at the
southern tip of the Coastal Range, Eastern Taiwan. Moreover, it is
also the first finding to report on the amber resin in themélange unit.
The chaotically tectonic origin of the Lichi Mélange and the arc-
continental collision of Taiwan island implies the complicated
journey and indeterminate era of resin production. This
discovery fills the gap in the fossil record of the Dipterocarpaceae
family in Taiwan and illustrates that the forearc basin gathers some
tropical sediment sources far away from today’s Taiwan island.

1.2 Geological background

Taiwan is an example of an ongoing arc-continental collisional
orogeny produced by an oblique convergence between the passive

FIGURE 1
The tectonic and regional geological map of Taiwan. (A) Taiwan is an active arc-continental collision region in the junction of the Eurasian Plate (EA)
and the Philippine Sea Plate (PSP). The south of Taiwan, the oceanic crust of the South China Sea (32–15 Ma), is subducted beneath the Philippine Sea
Plate along the Manila Trench. To the east, the Philippine Sea Plate is subducted beneath the Eurasian plate along the Ryukyu trench and is moving
northwestward at 310o at a rate of 82 mm/yr (Yu et al., 1997), colliding with the continental margin and forming the Coastal Range in Eastern Taiwan.
To the southeastern offshore of Taiwan, the Huatung Ridge is a retrowedge ridge analogous to the Lichi Mélange; the forearc basin of the North Luzon
Trough corresponds to the Plio-Pleistocene remnant forearc basins of the Coastal Range; the North Luzon Arc is equivalent to theMiocene volcanic units
of the Coastal Range (modified from Lai et al., 2021; Malavieille et al., 2021). EA: Eurasian Plate; PSP: Philippine Sea Plate; Wf: Western Foothill; Hs:
Hsuehshan slates; Bs: Backbone slates; Tb: Tailuko Belt (schists); Yb: Yuli Belt (schists) (B) The petrographic samples (red dots) are mainly collected from
the sandstone blocks in Lichi Mélange in the Jia River drainage, Fukang sandstone near Fukang Fisher Harbor, and the Paliwen Formation in the northern
part of the Jia River drainage, respectively. In this study area, the other large-scale exotic blocks (Serpentinite and Andesite) can also be found in Lichi
Mélange (Modified from Lin et al., 2008).
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continental margin of the Eurasian Plate and the Luzon volcanic arc
on the Philippine Sea Plate (Chai, 1972; Suppe, 1981; Hayes and
Lewis, 1984; Suppe, 1984; Tsai, 1986; Yu et al., 1997). The Eurasian
Plate is adjacent to the South China Sea oceanic lithosphere
southeastward that is subducted beneath the Philippine Sea Plate
along theManila trench, whereas the Philippine Sea Plate northward
is subducted beneath the Eurasian Plate along the Ryukyu Trench
(Figure 1A). The arc-continent collision is initiated at 5 Ma (e.g.,
Teng, 1990), with the onset increased in clastic sedimentation in
Western and Eastern Taiwan, in the northern part of Taiwan and
continuously propagates to the south.

The island of Taiwan consists of five morphotectonic units from
west to east: the Coastal Plain, theWestern Foothills, the Hsuehshan
Range, the Central Range, and the Coastal Range. The Coastal Plain
andWestern Foothills consist of Pliocene to modern shallow marine
siliciclastic deposits. The Hsuehshan Range and the western part of
the Central Range are composed of Eocene to Miocene deep marine
turbidites. The eastern part of the Central Range is featured by two
metamorphic belts, including Tailuko and Yuli belts, which consist
of the Paleozoic to the Mesozoic metamorphic basement and
Oligocene to Miocene greenschist to blueschist facies,
respectively. Lastly, the Miocene to Pliocene-accreted Tuluanshan
volcanic arc and the Miocene to Pleistocene-deformed flysch forearc
basins are exposed in the Coastal Range, Eastern Taiwan.

Eastern Taiwan is featured by the arc-continental collision
along the Longitudinal Valley. Nowadays, with a length of
approximately 150 km and a width of approximately 10 km, the
Coastal Range is composed of four geological units: 1) the
Miocene accreted volcanic arc of the Tuluanshan Formation,
2) the overlapped Plio-Pleistocene deformed sequence of
unmetamorphosed flysch deposits, and the conglomerate of the
Fanshuliao and Paliwen Formations, 3) the Miocene to Pleistocene
chaotic disrupted blocks-in-matrix Lichi Mélange, and 4) the
Pleistocene Peinanshan conglomerate (Hsu, 1956; Chang, 1967;
Chang, 1969; Teng, 1987; Chen, 1988).

1.3 Lichi Mélange

“Mélange” is a term for mappable units of chaotic mixed rocks,
including blocks of different lithology, origins, and ages (blocks-in-
matrix) (Greenly, 1919; Festa et al., 2010). It is common to find the
mélange unit at many collisional- and accretionary-type orogenic
belts worldwide. In Taiwan, the Lichi Mélange, widely exposed along
the southwestern flank of the Coastal Range, consists mainly of
poorly stratified mudstone in which some large or small rock
fragments or blocks of hard greyish sandstone, gabbro,
serpentinite, and a minor slate are present (Hsu, 1956). Other
exotic block lithologies include andesite, volcaniclastic rocks,
limestone, ophiolite-bearing sedimentary rocks, amphibolite, low-
grade meta-sandstones, and flysch blocks similar to the Fanshuliao
and Paliwen formations scattered in the Lichi Mélange (Liou, 1977;
Page and Suppe, 1981; Sung, 1991). The characteristic mesoscopic
structure of the Lichi Mélange is that the curviplanar surfaces of the
penetrative scaly foliation are generally polished and have aligned
minerals and slickensides (Hsu, 1976; Teng, 1981; Chen, 1991; Chen,
1997; Chang et al., 2000; Chang et al., 2001). The origin of the Lichi
Mélange is still debated. Prior studies have shown evidence of

sedimentary (Liou, 1977; Page and Suppe, 1981) and tectonic
processes (Chen, 1997; Chang et al., 2000; Chang et al., 2001) of
the Lichi Mélange.

2 Materials and methods

The studied amber piece was collected from the broken
sandstone blocks in the Jia River drainage (Figure 1B).
Stratigraphically, it was unearthed from the Lichi Mélange at the
southern tip of the Coastal Range (Figure 1). Embedded in a greyish
sandstone matrix, the amber is yellowish and measures 1 cm in size
(Figure 2). It is now reposited in the National Museum of Natural
Science (NMNS, with catalog number NMNS 008480-F062389). To
understand the origin and organic characteristics of the amber, this
study performed a petrographic analysis of the matrix around the
resin and the adjacent sandstone blocks to identify the sedimentary
provenance.

In addition to the matrix around the amber, we also collected
45 sandstone blocks (43 samples along the Jia River drainage, one
sample in the northern part of the Fukang fishing port, and one
sample in the northern part of the Jia River drainage; Figure 1B). All
the sandstone samples were block-in-matrix in sheared mudstone.
The sedimentary facies are massive sandstone facies and thickly
bedded-parallel laminated sandstone facies, and the samples were
polarized for microscope observations, and we used Guzzi and
Dickinson’s method (Dickinson, 1970) to study the Q-F-L
(quartz-feldspar-lithic fragment) diagram.

This study further implemented Raman spectroscopic analysis,
FTIR-ATR, and Py-GC-MS to identify its organic characteristics.
First, Raman spectra were obtained from an Enwave Prott-B2 in the
Taiwan Union Lab of Gem Research. The near-infrared excitation is
at 785 nm. Spectra were recorded at 1.6 cm−1 pixel resolution and
250–2,350 cm−1 in the spectral range.

Second, FTIR-ATR analysis was performed with a PerkinElmer
FRONTIER FTIR at the Institute of Earth Sciences, National
Taiwan Ocean University. Spectra were collected from 4,000 to
400 cm−1. The highest resolution was 0.4 cm−1, and the common
resolution was 4 cm−1. Compared with traditional transmissive
infrared analysis, this method has the advantages of high
resolution, shorter analysis time, reduced sample pre-processing
procedures, analysis of liquid and solid samples, and saving
sample volume. The ratio of the integrated area of
characteristics-absorbed wave provides a good way to distinguish
the difference in provenance (Chen, 2019; Chen and Chang, 2020).
The Factor (H) and Factor (O) are noted as follows:

Factor H( ): CH2 H( ) + CH3 H( )
CH2 H( ) + CH3 H( ) + CH3 L( ) + CH2 L( ) + C � C( ) + C � O( )

(1)
Factor O( ): C � O( )

CH2 H( ) + CH3 H( ) + CH3 L( ) + CH2 L( ) + C � C( ) + C � O( )
(2)

Lastly, Py-GC-MS uses a sample heated to the point of molecular
decomposition to characterize the resulting production of smaller
biomolecules. A piece of the amber of less than 1 mg was sampled
and ground into powder and was then prepared for the Pyrolysis-
Gas Chromatography-Mass Spectrometry (Py-GC-MS) analysis.
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Py-GC-MS analyses were carried out using the Frontier PY-3030
Pyrolyzer system fitted to the Agilent 7890 GC which was coupled to
the 7000 MS. The amber sample was loaded into a deactivated
stainless steel sample cup and then pushed into the pyrolyzer by
the autosampler. The initial pyrolysis temperature was set to 225°C.
After heating at 225°C, the residue was then pyrolyzed at 300°C,
350°C, 380°C, 420°C, 450°C, and 600°C, with a heating rate of 20°C/
min. The GC injector was held at 310°C, and the split mode was
employed with a split ratio of 30:1. For the gas chromatographic
separation, a Frontier UA-5 column (30 m × 0.25 mm i. d; 0.25 mm
film thickness) was used. The carrier gas was operated in constant
flow mode (He, purity 99.9995%) at 1.0 ml/min. The initial oven
temperature was held at 40°C for 5 min then ramped to 300°C at a
rate of 4°C/min, and then held for 20 min. The MS was operated in
EI mode with an ionization energy of 70 eV; the transfer line was
310°C, and it was run in a scan mode (mass range 50–700 Da). The
data processing was done with the MassHunter software, and the
identification of compounds was based on the elution pattern and
the comparison of mass spectra with the published works of
literature. Py-GC-MS analylsis was performed in the Exploration
and Development Research Institute, CPC Corporation, Taiwan.

3 Results and discussions

3.1 Characteristics of the Raman spectra

The result of the Raman spectra of the resin is shown in Figure 3.
The most characteristic bands in the Raman spectrum of resin are
the medium-strong and robust features at 1,646 and 1,450 cm−1,
respectively, whichmay be assigned to ν(C=C) stretching modes and
δ(CH2) deformation modes of characteristic peaks (Edward and
Farwell, 1996; Brody et al., 2001). In the literature (Moreno et al.,
2000; Brody et al., 2001; Winkler et al., 2001; Badea et al., 2015), the
intensity ratio of the ν(C=C)/δ(CH2) and I1646/I1450 is reported
(Badea et al., 2015) to be indicative of the maturation process. The
intensity ratio of the Lichi Amber is < 1 (0.82), owing to the
degradation of the ν(C=C) unsaturation in the fossilized resin,
probably through aerial or microbial oxidation (Edward and
Farwell, 1996).

FIGURE 2
Fossil resin (amber) with wall rock from Lichi Mélange, Taiwan. The resin mosaic in the sandstone block in Lichi Mélange in Figure 1B and the
yellowish resin show the transparent glassy occurrence.

FIGURE 3
The Lichi amber Raman spectrum diagram. The Raman shift
wavenumber is 400–1800 cm−1, and at 1,450 and 1,646 cm−1, has the
strongest intensity peaks.

FIGURE 4
FTIR absorb spectra of amber samples from Zhangpu, Taiwan,
and Sumatra. At 3,000–2,800 cm−1, the absorbed peaks are CH3 and
CH2 stretching vibrations; at 1,385–1,370 cm−1, absorbed peaks are
CH2 bending vibration saturated hydrocarbon. At 887 cm−1, the
function group is exocyclic methylene. The blue, black, and red lines
represent amber data from Zhangpu, Lichi, and Sumatra, respectively.
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3.2 Characteristics of FTIR-ATR

The FTIR-ATR result of the Lichi Amber is shown in Figure 4. The
wavenumbers 3000 to 2,800 cm−1 are saturated hydrocarbons for CH3

and CH2 stretching vibrations, and the wavenumbers 1385–1,370 cm−1

are CH2 bending vibrations. With different origins and the amber’s
maturation process, the proportion of functional groups (C-H, C=C, and
C=O bonds) will have different absorption ratios (Chen, 2019; Chen and
Chang, 2020). In addition, the Lichi Amber sample has higher exocyclic
methylene at 887 cm−1, so it can be judged that the sample is less affected
by heat or encounters short-buried history (Guiliano et al., 2007).
Compared with different origins of amber (Chen, 2019; Chen and
Chang, 2020; Chang and Chang, 2020; Chang, 2022; Chang et al.,
2022), the pattern of the Lichi Amber has a high similarity with that
of the Sumatra Amber. However, it shows a different proportion of
functional groups from the pattern of the Zhangpu Amber, which is the
closest geographic location. This result implies that the Lichi Amber
might come from tropical Southeast Asia rather than the southeast of
mainland China. The ratio of the empirical formula, Factor(H) versus
Factor(O) (Figure 5), also shows the same result that the Lichi amber is
correlated to the Southeast Asian amber (Chen, 2019; Chen and Chang,
2020; Chang and Chang, 2020; Chang, 2022; Chang et al., 2022).

3.3 Py-GC-MS result

Figure 6 shows the Py-GC-MS analysis pattern of the Lichi Amber.
The amber contains sesquiterpenes, mainly Calamenene isomers,
accompanied by β-amyrin, α-amyrin, and Hop-22 (29)-en-3β-ol
triterpenoids. According to the composition of these terpenoids, the
Lichi Amber in Lichi Mélange, Eastern Taiwan, belongs to the plants in
the family of Dipterocarpaceae (Shi et al., 2014; Bonaduce et al., 2016;
Chang and Chang, 2020; Chang et al., 2022; Simoneit et al., 2020).

3.4 The origin of the sandstone revealed by
petrographic analysis

The petrography of the 46 sandstone blocks’ samples in the
southern tip of the Lichi Mélange shows two groups of different
sandstone compositions (Figure 7A), which are the quartzose
greywacke sandstone and the volcaniclastic sandstone. The
quartzose greywacke mainly contains 65%–99% quartz, 0%–4%
feldspar (mostly plagioclase), and 0%–34% lithic fragments.
Under the thin section (Figure 7B), the quartz’s angular and less
polycrystalline quartz, which might come from the metamorphic
rocks, can be found Moreover, the pyroclastic sandstone contains
2%–15% quartz, 78%–82% feldspar, and 5%–15% lithic fragment. In
Figure 7C, the pyroclastic thin section shows that the quartz and
plagioclase particles are angular. The petrographic result is similar to
previous studies (Chen and Wang, 1988; Sung, 1991; Yang et al.,
2012) and can be compared with the Type-I volcaniclastic sandstone
and Type-II Quartzose-greywacke sandstone reported by Sung.
(1991). The petrography of the amber’s surrounding matrix also
shows a Quartz-rich composition (quartz ~74.78%). However,
limited by the insufficient number of samples collected, a single
sample cannot summarize the most favorable preservation
environment. This article is based on a single sample for
observation and description. The petrographic studies show that
most of the sandstone blocks in the Lichi Mélange are quartz-rich
sandstones. Among the quartz granules, the primary source is from
the low metamorphic facies region (Sung, 1991). Furthermore, most
sandstone blocks belong to the turbidite facies; the original
depositional environment also belongs to the deep-sea submarine
fan of continental slopes or uplifts. Thus, the most numerous
sandstone blocks in Lichi Mélange are from accretionary prisms
from the Eurasian margin (Sung, 1991; Lai et al., 2021).

3.5 A hypothetical transportation route for
Lichi amber

Through the Py-GC-MS and the biomarker, the polymer of
bicycling sesquiterpenoid hydrocarbons and Triterpenoid indicated
that the resin came from the Dipterocarpaceae species. The FTIR
absorption spectrum shows that the pattern is more highly
correlated to Sumatra’s pattern than Zhangpu’s pattern, implying
that the source may come from tropical southeastern Asia. The
petrographic and sedimentary facies analyses indicate that amber’s
wall rock source comes from deep-sea fans on the continental slope
or continental uplift (Lai et al., 2021) at the margin of the Southeast
Eurasia Plate.

The arc-continental collision between the Eurasian plate and the
Luzon arc formed the history of the Taiwan orogenic belt and
accumulated a variety origin of the sediment deposit in the forearc
basin and was mixed in the Lichi Mélange from 15 to 5 Ma
(Suppe, 1981; Teng, 1990; Chang et al., 2000, 2001). The Lichi
amber, as one of the sources, comes from the southeastern Asia
tropical forest, implying a fluke clue of a geomarker despite its lack of
geochronological evidence. With several analyses in this study and
the tectonic evolution of South China Sea rifting and the arc-
continental collision of the Eurasian Plate and the Philippine Sea
Plate, the hypothesis model is that (1) with the spreading of the

FIGURE 5
The origin of the different amber. Different color areas represent
the different provenances of the amber. The yellow, blue, purple, and
green area represent Southeast Asia, Madagascar, Dominican, and
Latvia, respectively.
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FIGURE 6
The total ion chromatogram of pyrolyzates of Lichi Amber at 350°C. Different peaks represent different organic matters. The identified compounds
are listed in the top left of the pyrogram.

FIGURE 7
Sandstone Petrography and petrographic thin section in Lichi Mélange. All the sandstone block data are collected from Lichi Mélange (Chen, 1988;
Pang, 2019). (A) Among the Q-F-L diagram, Q is quartz, F is a feldspar, and L is a lithic fragment. This diagram shows the proportion of three factors. (B)
TYPE I is the feldspar-rich sandstone petrography, and (C) TYPE II is the quartz-rich sandstone petrography (Sung, 1991). The sources are mainly quartz-
rich and lithic fragments. The feldspar-rich source is less. The gray circle is the data from Chen’s (1988) sandstone blocks in Lichi Mélange. The black
circle data are from Pang. (2019); the sampling location is displayed in Figure 2.
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Dipterocarps from India since the Cretaceous (Khan et al., 2020), 2)
the Dipterocarps migrated to the Southeast Asian rainforest in
Neogene 3). The nannofossils study of the exotic blocks in Lichi
Mélange suggested that the Lichi amber might form and transport
from the Sumatra and associated regions to the basin and be
preserved in sandstone on the continental slope or the
continental uplift at the margin of the Eurasian Plate in
18–5.6 Ma (NN3-NN11, Chi, 1982) 4). From 5 Ma to the
present, the sandstone and the amber slumped into the forearc
basin, and during the arc-continental collision, the slumping or the
shortening of the forearc basin with intensive shearing formed the
Lichi Mélange and the amber was exposed to the surface (Suppe,
1981; Teng, 1990; Chang et al., 2000; Chang et al., 2001; Lai et al.,
2021).

4 Conclusion

This study represents the first report on the unique amber resin
from Taiwan. Raman spectra and FTIR-ATR analysis attribute the
resin to the mature amber resinite. The FTIR absorption spectrum
shows a great similarity between the studied amber and the amber
from Sumatra, implying an origin from Southeastern Asia rather
than the Chinese mainland. Revealed by Py-GC-MS analysis, the
biomarkers such as sesquiterpenoid and triterpenoid suggest an
origin from Dipterocarpaceae, which is commonly found in modern
tropical Southeast Asia. Furthermore, although a single sample
cannot directly assume the most favorable preservation
environment and due to the complexity of the provenance of the
mélange unit, we combined the result of the petrographic analysis
with previous studies of sedimentary facies and tectonic evolution of
the marginal Southeast Eurasian Plate and proposed a hypothesis
transportation model of the amber.
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